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ABSTRACT

Recent advances in large language models (LLMs) have fueled the vision of au-
tomated scientific discovery, often called AI Co-Scientists. To date, prior work
casts these systems as generative co-authors responsible for crafting hypotheses,
synthesizing code, or drafting manuscripts. In this work, we explore a complemen-
tary application: using LLMs as verifiers to automate the academic verification of
scientific manuscripts. To that end, we introduce SPOT, a dataset of 83 published
papers paired with 91 errors significant enough to prompt errata or retraction,
cross-validated with actual authors and human annotators. Evaluating state-of-the-
art LLMs on SPOT, we find that none surpasses 21.1% recall or 6.1% precision
(o3 achieves the best scores, with all others near zero). Furthermore, confidence
estimates are uniformly low, and across eight independent runs, models rarely
rediscover the same errors, undermining their reliability. Finally, qualitative anal-
ysis with domain experts reveals that even the strongest models make mistakes
resembling student-level misconceptions derived from misunderstandings. These
findings highlight the substantial gap between current LLM capabilities and the
requirements for dependable AI-assisted academic verification.

1 INTRODUCTION

From simple next-token predictors (Radford et al., 2018; Brown et al., 2020), large language models
(LLMs) have evolved to exhibit graduate-level STEM proficiency (Guo et al., 2025a; Rein et al., 2024;
Feng et al., 2025), generate hypotheses (Si et al., 2024; Park et al., 2024a), synthesize literature (He
et al., 2025), and draft manuscripts (Jain and Jain, 2024). Such advances have driven interest in their
deployment as “AI Co-Scientists” (Gottweis et al., 2025; Lu et al., 2024), proving to be viable options
in the "generative" role of scientific research. They have rediscovered established findings (Penadés
et al., 2025) and generated novel hypotheses worthy of investigation across diverse fields (M. Bran
et al., 2024; Pan et al., 2025; DeepMind, 2025). However, despite their widespread usage as
“generators” in the forward pass of scientific research, their utility in the backward pass of academic
verification or as verifiers remains underexplored, a blind spot in which most systems lean on LLM
judges (Zheng et al., 2023) without validation on their credibility in reviewing scientific research.
Prior research on factual verification has primarily focused on everyday knowledge tasks (Chen
et al., 2019; Bekoulis et al., 2021; Zhang et al., 2025), reference-based claim checking (Ortega and
Gómez-Pérez, 2025; Kumar et al., 2025), or computer-science disciplines alone (Siegel et al., 2024;
Dycke et al., 2022; Baumgärtner et al., 2025). This limits the potential applicability of the proposed
benchmarks as evaluation tools for verification systems in AI-driven science research.

In this paper, we introduce SPOT (Scientific Paper Error Detection), a complex multi-modal academic
error verification benchmark, comprising 83 up-to-date manuscripts spanning ten scientific fields
with multiple human-annotated errors. Given large-scale multi-modal inputs with 12,000 text tokens
and 18 images on average, multi-modal LLMs (MLLMs) are tasked with generatively identifying
more than one error with varying difficulties in a single paper: e.g., , factual inconsistencies, figure
duplications, and mathematical errors. We only select papers published from 2024, minimizing the
potential contamination with parametric knowledge during evaluation (Bejan et al., 2023). It should
be noted that, whereas prior evaluation suites focus on sentence-level fact checks of everyday knowl-
edge (Thorne et al., 2018; Wadden et al., 2020) or on reproducing noisy peer-review feedback (Lin
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: I detected the following 2 errors 

Figure 2 seems to be unexpectedly
similar to Figure 5 ...

[1] Seed Collection

Author responded,
included to dataset

No author response,
excluded from dataset

[2] Error Validation, Sanity Check

[3] Normalization

Oops, we made an
error in equation

3. Author acknowledged,
included to dataset

User 1

Author

Sorry, We admit!

Fig. 2 is duplicated
with Fig. 5 in page...

User 2
Author

....

The experimental
results are not

aligned with methods
section...

Author

Equation 5 is wrong because ....

Left out an annotated error
=> False Negative

Correctly detected an annotated
error => True Positive

Pointed out an error not included in
the benchmark => False Positive

Response Generation

Figure 1: Overview of SPOT. Green indicates benchmark construction process, from seed collection through
validation to normalization; blue indicates evaluation, where LLM outputs are compared to ground-truth errors
and classified as true positives, false positives, or false negatives.

et al., 2023; Shin et al., 2025), SPOT extends verification to the full complexity of frontier-level
scientific research. This paper is mainly divided into three parts.

1. SPOT Benchmark Design Principles (Section 2): We detail our efforts of multiple automated
filtering, author verifications, and human annotations, highlighting our commitment to include
confirmed, noncontroversial errors across diverse scientific subdomains.

2. Model Evaluation and Analysis (Section 3) We present evaluation results, demonstrating that
even the state-of-the-art models struggle on SPOT. Specifically, OpenAI’s o3 (OpenAI, 2025a)
and Llama-4-Maverick (Meta AI, 2025) achieved 18.4% and 0.9% at pass@1 to name a few.
Furthermore, model confidence approaches zero when repeated over eight independent trials,
questioning their reliability. We also observe that proprietary reasoning models suffer in detecting
figure-related errors, highlighting shortcomings in their multi-modal capabilities. Such results
cast serious concerns, revealing significant gap between current AI capabilities and the demands
of rigorous scientific verification.

3. Expert-led Case Studies (Section 4) We present expert-led case studies in mathematics and
materials science, analyzing model outputs to diagnose their failures. Our observations show
that models struggle with long-tail knowledge likely absent in web data and extremely long
contexts. We also note that, without fully spelled-out derivations, models fail to understand some
calculations and overlook domain-specific conventions, making student-like errors.

2 SPOT: AUTOMATING ERROR DETECTION IN SCIENTIFIC RESEARCH

In this section, we introduce a detailed overview of SPOT, a complex multi-modal academic veri-
fication benchmark with cross-validated scientific manuscripts. We ensure credibility in the error
annotations through a cross-validation process between human experts in each field and proprietary
language models (Section 2.1). Spanning over ten different fields and six error types (Section 2.2),
we introduce evaluation protocols mainly based on precision, recall, and pass@K (Section 2.3).

2.1 DATA CURATION

Stage 1 - Seed Collection We source our seed manuscripts from two major repositories: (1)
WITHDRARXIV (Rao et al., 2024) and (2) PubPeer1. First, we extract entries annotated as “factu-
al/methodological/other critical errors” from WITHDRARXIV, a dataset of 14,000 papers and their
associated retraction comments. Second, we crawl PubPeer, an anonymous post-publication peer
review website, where users flag methodological flaws, image manipulations, and other scientific
concerns. Following Ortega (2022), we query initial searches using alphabets, extract high-frequency

1https://pubpeer.com/
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keywords from the returned paper titles, re-query using those keywords, and scrape each paper’s
metadata (title, authors, venue) alongside the entire comments. We attempted to include medRxiv
and bioRxiv, but dropped them due to the low yield (1 and 13 papers each).

Stage 2 - Automated Filtering We apply two GPT-4o (OpenAI et al., 2024)2 filtering passes.
The first retains comment–manuscript pairs that unambiguously pinpoint a specific section, figure,
equation, or table, reducing our pool to 1,855 WITHDRARXIV and 25,378 PubPeer samples. The
second pass removes reports that require external artifacts (e.g., duplicated images or errors detectable
only via external datasets or code). Finally, to avoid overlap with GPT-4o’s training cutoff , we filter
for papers published after 2024, yielding 58 WITHDRARXIV and 215 PubPeer samples.

Stage 3 - Error Validation by Original Authors For remaining manuscripts, we only retain those
the original authors directly confirmed. Specifically, we only retain PubPeer comments followed by
an explicit author response acknowledging the mistake and treat WITHDRARXIV self-retractions as
definitive evidence of a critical error. In all cases where the author themselves admits the problem,
we take this acknowledgment as confirmation of a genuine error. While some errors may appear to
be evident, we do not include any error with explicit acknowledgment from the original authors, as
many of the work cover ungoing areas of research, which remain unsettled in the scientific discourse.

Stage 4 - Sanity Check from Human Annotators We further apply a two-stage human validation
with mutually exclusive annotators. First, with part of the authors as human annotators, we manually
validate if remaining flagged issues fulfill three conditions: (1) self-contained, (2) identifiable, and (3)
explicitly acknowledged by the original authors. For those which satisfy the conditions, We retrieve
the archived PDF to verify that the error remains visible, then document a concise description of
the problem, quote the author’s acknowledgement verbatim, and assign both an error category and a
severity rating—proxied by the form of the author’s response (erratum versus retraction). Afterwards,
the second group conducted a comprehensive audit to ensure consistent application of these standards.
The final SPOT benchmark comprises 83 manuscripts with 91 annotated errors. Although modest in
size, our dataset aligns with recent trends toward compact, high-quality benchmarks: MT-Bench (80
items) (Zheng et al., 2023), GPQA-D (198 items) (Rein et al., 2024), AIME 2024/2025 (30 items
each) (MAA, 2024), and USAMO 2025 (6 items) (Petrov et al., 2025).

Stage 5 - Normalization We normalize manuscripts in PDF format into text and image sets.
While prior benchmarks in manuscript error detection (Baumgärtner et al., 2025) and AI-assisted
science (Seo et al., 2025) have relied on raw PDFs or text-only inputs, this approach offloads document
understanding to OCR and parsing modules rather than the LLM itself, thereby conflating upstream
parser failures with downstream model errors. Instead, we process all the documents for usage. We
first employ Llama-Parse3 to convert each PDF into Markdown and capture high-fidelity screenshots
of every figure, table, and equation. In pilot experiments, OCR failures, particularly in mathematical
expressions, led downstream models to misinterpret formatting artifacts as errors. To address this,
we introduce a refinement stage. For each page, the initial OCR text and screenshots (one full-page
image plus isolated equations and paragraphs, roughly eight images per page) are sent to GPT-4.1 for
correction. Finally, we conduct a manual audit of all processed pages to ensure that every flagged
error remains visible and accurately represented in the OCR output.

2.2 BENCHMARK STATISTICS

Error Types We derive the six categories in Table 1 inductively from our annotations rather
than setting a priori. As we review each error, we group similar cases. This is to capture the true
distribution of errors existing in manuscripts. During this process, figure-duplication instances
initially overwhelmed the dataset, so we filtered based on severity and paper category to prevent a
single type from dominating.

Paper Subjects We present general statistics in Table 1. We classify each paper into ten research
domains: Mathematics, Physics, Biology, Chemistry, Materials Science, Medicine, Environmental

2Using version gpt-4o-2024-08-06
3https://www.llamaindex.ai/llamaparse
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Table 1: Overview of SPOT. Left: High-level statistics—83 manuscripts, 91 errors from 47 paper sources;
tokens per manuscript (mean ± std., range) and images per manuscript (mean ± std., range). All token counts
were computed using the GPT-4o (Hurst et al., 2024) tokenizer from tiktoken (OpenAI, 2025b). Right: Six
error categories with concise descriptions and instance counts in parentheses.

Benchmark Statistics Category Descriptions

General Equation / Proof (37) Incorrect mathematical derivationsTotal Manuscripts: 83
Total Errors: 91 Figure Duplication (27) Reused or manipulated imagesTotal Paper Sources: 47

Tokens Data Inconsistency (18) Mismatched values between text, tables, and figuresAvg (std): 12, 8877,421
Max / Min: 46, 441/1, 207 Statistical Reporting (4) Misused statistical values or inappropriate testsImages
Avg (std): 17.520.1 Reagent Identity (3) Mislabeled or incorrect materialsMax / Min : 80/0

Error severity Experiment Setup (2) Missing controls or misreported protocolsErrata / Retract: 59/32

Science, Engineering, Computer Science, and Multidisciplinary, based on its journal venue or arXiv
subject. In Figure 2, we observe clear domain patterns: mathematics, computer science, and physics
papers skew toward equation/proof flaws; biology toward figure-duplication. 76 manuscripts out of
83 contain a single error, six contain two, and one paper has the maximum of three annotated errors.
We proxy error severity by the authors’ post-publication response: 59 errors were addressed via
errata, while 32 led to full retractions. Retractions are concentrated mostly in equation/proof cases.
Manuscripts span 1k–46k tokens and include 0–80 figures, creating a long context, multimodal, and
figure-rich benchmark far exceeding the scale and complexity of existing error-detection datasets.
Although longer papers tend to include more figures, the relationship is weak (Pearson’s r = 0.19),
highlighting diverse presentation styles across fields.

2.3 EVALUATION PROTOCOL
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Figure 2: Distribution of annotated errors by
research domain and error type.

We provide the full paper as interleaved text and im-
age data, followed by the prompt to return every error
with each error’s location (section, figure, equation,
or table), accompanied by a description. The out-
put is prompted to be a structured JSON format (see
Appendix F for an example).

Evaluation Metric We mainly evaluate verification
performance through precision, recall, and pass@K.
A predicted error is counted as a true positive (TP)
only when the model’s reported location matches a
benchmark annotation and an LLM confirms they
indicate the same error4. All others, including those
at non-annotated locations or those matching an an-
notated location but with a different description, are
considered false positives (FP), and any benchmark
annotation the model fails to predict is a false nega-
tive (FN). We treat the error annotations included in SPOT as exhaustive: any model-reported error
not matching an annotation is counted as a false positive. Although models could, in principle, flag
genuine errors outside our annotations, through case studies later in this paper, we notice such cases
are highly unlikely. To summarize model performance, we report Precision and Recall:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
. (1)

4GPT-4.1 is used to compare predicted error descriptions against benchmark annotations as a similarity
check (Ni et al., 2024); the LLM does not evaluate the errors’ correctness or severity.
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Table 2: Performance of ten models on the SPOT dataset. The Think column denotes the use of test-time
scaling. Precision, Recall, pass@1 and pass@4 (all in %) are reported as mean and standard deviation (in
parentheses) over eight independent trials. The highest value in each column is bolded, and the second-highest
is underlined. Detailed evaluation results are available in Appendix G.

Models Think Precision (%) Recall (%) pass@1 (%) pass@4 (%)

o3 (2025-04-16) ✓ 6.11.3 21.14.4 18.42.1 37.81.8

GPT-4.1 (2025-04-14) ✗ 2.80.8 6.01.6 6.61.7 17.81.5
Gemini-2.5-Pro (preview-03-25) ✓ 3.11.7 10.15.6 7.83.8 25.94.0
Gemini-2.0-Flash-Lite (001) ✗ 1.00.8 1.61.3 1.51.0 6.01.5
Claude-3.7-Sonnet (20250219:Think) ✓ 3.01.3 6.02.4 5.51.7 18.62.8
Claude-3.7-Sonnet (20250219) ✗ 3.21.5 5.82.7 4.51.9 14.11.6

Qwen2.5-VL-72B-Instruct ✗ 0.61.2 0.40.7 0.40.6 1.71.0
Qwen2.5-VL-32B-Instruct ✗ 1.92.0 1.91.7 2.01.5 5.61.6
Llama-4-Maverick ✗ 2.02.6 0.91.2 0.91.0 3.31.2
Llama-4-Scout ✗ 0.81.0 1.92.3 1.82.0 7.23.1

Precision quantifies the proportion of the model’s flagged errors that match benchmark annotations,
penalizing unexpected predictions, and is most appropriate when false positives impose significant
review overhead or undermine confidence in the tool’s outputs. Recall quantifies the proportion of
annotated errors the model successfully identifies, penalizing missed detections. In practice, users
concerned about model hallucinations or the impact of unannotated flags should focus on Precision.
In contrast, those seeking comprehensive error coverage, or who doubt the exhaustiveness of our
annotations, should emphasize Recall.

Following Kulal et al. (2019) and Chen et al. (2021), to capture how error detection improves with
multiple attempts, for K runs per paper, we define :

pass@K =
1∑N

i=1 |Gi|

N∑
i=1

∑
g∈Gi

1
[
∃ s ∈ {1, . . . ,K} : g ∈ pi[s]

]
, (2)

where Gi is the set of annotated errors in paper i and pi[s] the set predicted in the s-th run. With 83
papers and 91 total errors we generate N = 8 independent runs per paper. For each pass@K we
draw K runs without replacement from the eight, repeat this resampling B = 1000 times, and report
the mean and standard deviation of the resulting bootstrap distribution for K ∈ {1, 4}.

3 MAIN RESULTS AND ANALYSIS

In the following sections, we evaluate six proprietary models: OpenAI o3 (OpenAI, 2025a), GPT-
4.1 (OpenAI, 2025c), Google Gemini 2.5 Pro (Google Cloud, 2025a), Gemini 2.0 Flash Lite (Google
Cloud, 2025b), Anthropic Claude 3.7 Sonnet:Thinking (Anthropic, 2025), and Claude 3.7 Sonnet
and four open models: Qwen 2.5-VL-72B/32B-Instruct (Bai et al., 2025), and Llama 4 Maverick/S-
cout (Meta AI, 2025). We select the most capable models per family and observe that these models
already score near zero in SPOT. Accordingly, as smaller models are unlikely to perform any better,
we do not include them in our evaluations. All models are accessed via APIs, and each call is retried
up to three times; those that still fail or are cut off due to length limits are marked incorrect.

3.1 MAIN RESULTS

Table 2 compares ten multi-modal LLMs on SPOT. o3 achieves the highest scores, with 6.1%± 1.3
precision, 21.1%± 4.4 recall, and a 37.8% pass@4. It is followed by Gemini-2.5-Pro (3.1%, 10.1%,
25.9%), Claude-3.7-Sonnet:Thinking (3.0%, 6.0%, 18.6%), and GPT-4.1 (2.8%, 6.0%, 17.8%).
The lighter proprietary variants, Gemini-2.0-Flash-Lite and the non-Thinking Claude-3.7-Sonnet,
score marginally above zero. Surprisingly, open-source models such as Qwen2.5-VL-72B-Instruct
and Llama-4-Maverick, which match proprietary models on existing multi-modal benchmarks like
MMMU (Yue et al., 2024) or MathVista (Lu et al., 2023), perform far worse on SPOT. As shown
in Figure 3, (1) the performance gap between o3 and Llama-4-Maverick is widest on SPOT (ours)
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Figure 4: Category-specific performance and calibration of six LLMs on SPOT. Left: Kernel density
estimates of each model’s reported confidence; all six models predominantly express very low confidence. Right:
Scatter plot of mean reported confidence (see Appendix C for further details) versus pass@4 for each model
(color), broken down by error type (shape). The dashed diagonal marks perfect calibration.

(∆ = 20.2 pp), and (2) SPOT is the only benchmark where Llama-4-Maverick’s score collapses to
near zero (0.9 %). While neither proprietary nor open-source models fully satisfy the requirements of
practical deployments of error-detecting AI systems, open-source models lag far behind in domain-
specific rigor and robust error-detection capabilities essential for scientific applications.
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Figure 3: Performance of o3 and Llama-4-
Maverick across six challenging STEM bench-
marks. The short red horizontal lines mark the gap
∆ = o3−Llama-4-Maverick for each benchmark.

A New Challenging Benchmark for STEM. Fig-
ure 3 illustrates the performance of o3 on six
benchmarks: MathVista (Lu et al., 2023), MMLU-
Pro (Wang et al., 2024), GPQA Diamond (Rein et al.,
2024), MMMU (Yue et al., 2024), HLE (Phan et al.,
2025) and SPOT (recall). o3 exceeds 80% on the
first four benchmarks, demonstrating robust general
reasoning and code understanding. However, perfor-
mance drops to roughly 20% on HLE, a curated set
of frontier, research-level academic questions, and
remains similarly low on SPOT (21.1%). This drop
in performance underscores the difficulty of spotting
errors in lengthy scientific text and figures.

Reasoning Models Excel at Equations but Falter on Figures The right panel of Figure 4 presents
the performance of six models across each category. In the Equation/Proof category, o3 leads with
a 62.6% (pass@4), followed by Gemini-2.5-Pro at 36.4%, while all other models remain below
5%, underscoring o3’s superior mathematical reasoning. Surprisingly, GPT-4.1 achieves a 44.4% in
the Figure Duplication category, outperforming Claude-3.7-Sonnet Thinking (33.3%), o3 (0%), and
Gemini-2.5-Pro (0%), revealing a weakness in figure analysis in reasoning models.

3.2 UNRELIABILITY OF MISCALIBRATED MODELS.

Alongside pass@4, calibration (Guo et al., 2017; Ovadia et al., 2019) indicates how much we should
trust a model’s predictions. In error detection, where false positives can incur substantial time and
labor, knowing when to trust a model is crucial. For each error category, we assess calibration
by comparing the model’s actual performance, measured as its average pass@4 rate, with its self-
estimated confidence. For details on how the confidence is derived see Appendix C.

However, Figure 4 (right) shows that confidence correlates only weakly with pass@4, and the
left panel reveals that most models report very low confidence, clustering near zero. Across 498
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Table 3: Multi-modality ablation for 13 models: recall and pass@4 (in %) are reported as mean (std) over
eight independent trials. The left panel shows each model’s performance with multi-modal inputs; the right
panel shows performance on the text-only subset of SPOT (48 figure-independent instances), including additional
unimodal LLMs (DeepSeek-R1, DeepSeek-V3, Qwen3-235B-A22B). The highest value in each column is
bolded, and the second-highest is underlined. Detailed evaluation results are available in Appendix G.

Multi-Modal Text-Only

Models Think Recall (%) pass@4 (%) Recall (%) pass@4 (%)

o3 (2025-04-16) ✓ 34.67.1 61.12.9 25.77.1 56.24.2
GPT-4.1 (2025-04-14) ✗ 0.50.9 2.01.4 8.42.5 19.82.7
Gemini-2.5-Pro (preview-03-25) ✓ 13.78.6 34.86.1 6.93.1 17.02.8
Gemini-2.0-Flash-Lite (001) ✗ 0.40.9 2.11.3 1.91.4 8.01.8
Claude-3.7-Sonnet (20250219:Think) ✓ 2.92.3 8.51.7 5.02.3 17.03.1
Claude-3.7-Sonnet (20250219) ✗ 1.92.1 4.81.5 5.83.1 15.22.8

DeepSeek-R1 ✓ – – 14.83.8 38.63.3
DeepSeek-V3 (0324) ✗ – – 1.91.1 6.72.1
Qwen3-235B-A22B ✓ – – 15.46.2 38.23.1

Qwen2.5-VL-72B-Instruct ✗ 0.00.0 0.00.0 4.72.2 11.22.5
Qwen2.5-VL-32B-Instruct ✗ 0.40.8 1.70.9 1.11.5 3.01.2
Llama-4-Maverick ✗ 0.50.9 2.11.4 0.81.0 3.51.5
Llama-4-Scout ✗ 0.40.8 2.01.4 1.62.1 5.92.5

model–instance evaluations (83 instances × six models), we observe only two cases (both from o3)
of full confidence, highlighting the widespread difficulty of reliably detecting errors in scientific
manuscripts. These findings demonstrate substantial variability across categories and reaffirm that
current LLMs remain unreliable for scientific error detection.

3.3 IMPACT OF MULTI-MODALITY IN DETECTING SCIENTIFIC ERRORS

To isolate the impact of images, we create a text-only subset by removing all instances from the figure-
duplication and any data-inconsistency category that necessitate figures. This yields 48 instances in
which errors can be detected using text alone. Table 3 compares model performance on the selected
instances under multimodal and text-only conditions. The left panel reports each model’s accuracy on
these 48 cases with figures included; the right shows performance after stripping out all figures. In the
text-only setting, we add three unimodal LLMs: DeepSeek-R1 (Guo et al., 2025b), DeepSeek-V3 (Liu
et al., 2024), and Qwen3-235B-A22B (Yang et al., 2025).

We observe two key findings. First, most models improve in recall and pass@4 when removing
images, suggesting that figures usually act as distractors. The exceptions are o3 and Gemini-2.5-Pro,
which see a modest drop without visual inputs. This indicates that they have been leveraging figures
to understand the paper rather than treating them as mere auxiliary signals. Second, the divide
between proprietary and open models is vast in the multi-modal setting, proprietary systems maintain
substantial recall (e.g., o3 at 34.6 %, Gemini-2.5-Pro at 13.7 %) and pass@4, whereas open-source
models collapse to near zero.

4 CASE STUDIES : EXPERT-LED REVIEW

To analyze model output in detail, we select two withdrawn manuscripts, each from mathematics and
materials science, for a qualitative review. A domain expert evaluated a paper and model outputs,
either a researcher with relevant publications or a PhD-trained postdoc in the field. Reviewers are
provided the LLM-flagged “errors” from o3 and Gemini 2.5 Pro alongside the official withdrawal
notices. They are asked to verify whether the model has missed any benchmarked errors. Moreover,
they are required to assess each flagged issue that falls outside our annotations to determine if any
presumed false positives correspond to valid flaws. We consulted the original authors to verify the
disputed issues whenever a reviewer remained uncertain.5

5Due to space constraints, we show only excerpts of model responses and one case study per domain; for the
complete results, see Appendix D.
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4.1 MATHEMATICS : PETERSEN AND TOMMAS(2024)

Petersen and Tommasi (2024) studies the configuration spaces of points in algebraic varieties with a
multiplicative decomposition, and discusses some applications such as the cohomology of moduli
stacks of hyperelliptic curves. It was withdrawn because of a gap that lies in the core arguments of
Theorem 1.8 and Theorem 1.13 which invalidates the bulk of the paper.

Both o3 and Gemini-2.5-Pro exclusively flag issues in Section 3. Ironically, this is the only part of the
manuscript not affected by the actual mathematical gap. o3 criticizes the calculation of Hk(M1,1, Vℓ)
in Section 3.3, claiming that the use of Eichler-Shimura isomorphism is wrong without giving too
much details. But there is no mistake in this part and the claim is hallucinated. It is worth noting
that applying Eichler-Shimura isomorphism in a similar context as the paper is exceedingly rare in
internet data. The formula may also appear differently than how the Eichler-Shimura isomorphism is
presented in common internet sources, whose equivalence requires genuine understanding of multiple
subjects, such as variation of Hodge structures and the theory of modular forms.

Eichler–Shimura is quoted as H1(M1,1, Vℓ) ∼= Sℓ+2 ⊕Q(−1− ℓ), but the Tate (Eisenstein) summand
should be Q(−1), independent of ℓ. The extra “−ℓ” is a mis-twist.

Figure 5: o3’s feedback on Petersen and Tommasi (2024).

On the other hand, Gemini-2.5-Pro tackles Theorem 3.8 as shown in Figure 6. Despite doing
reasonable calculations, the model makes a false claim on H0(A1,1, V (2, 2))(−1), resembling
mistakes students could make after recollecting a wrong fact.

The stated result H1(M2, V (2, 2)) = Q(−3) contradicts the Gysin-sequence derivation (Sec. 3.1),
which yields H1(A2, V (2, 2)) = 0, together with H0(A1,1, V (2, 2))(−1) = Q(−3) (Sec. 3.5) and
the non-vanishing/isomorphism of the Gysin map G : H0(A1,1, V (2, 2))(−1) → H2(A2), thereby
implying H1(M2, V (2, 2)) = 0.

Figure 6: Gemini-2.5-Pro’s feedback on Petersen and Tommasi (2024).

4.2 MATERIAL SCIENCE : YE ET AL. (2025)

In our materials science case study, we select Ye et al. (2025), which uses TfOH to synthesize covalent
organic frameworks (COFs). However, it mislabels several samples in its figures. These errors are
easier to spot than those in the mathematics papers and would be obvious to any attentive reader.

Optimal TfOH concentration is stated as 0.006–0.016 M, yet all optimisation and standard syntheses
use 0.2 M TfOH. Internal inconsistency invalidates the universality of the claimed optimum.

Figure 7: o3’s feedback on Ye et al. (2025).

Errors pointed out by o3 exemplify failures in both long-range context comprehension and multi-hop
reasoning. For instance, in Figure 7, o3 does not realize that the optimal concentration value reported
by the authors (0.006–0.016 M) is the concentration of the final mixture, while the the second value
(0.2M) is the concentration of the acid before being added to the final mixture. This misunderstanding
likely arises because the optimal concentration in the final mixture is mentioned only once, and the
explicit calculation is not shown throughout the manuscript. As a result, o3, having seen references
only to the concentration before mixture, fails to infer the relationship between the two values.

In (A) of Figure 8, Gemini 2.5 Pro seems to make a "reading" mistake, attributing the second facet
pair to TAPPy-TFPPy-COF when it in fact describes TAPPy-BPTC-COF. Notably, however, in (B), it
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(A) There is a contradiction in the indexing of PXRD peaks for TAPPy-TFPPy-COF (Figure 6H). The
peaks are initially assigned to facets including (020): ’TAPPy-TFPPy-COF displayed peaks [...]

(B) The BET surface area for the scaled-up TFPPy-PDA-COF is reported as ‘1606 cm2 g−1‘.
The correct unit is ‘m2 g−1.‘ This unit error misrepresents the surface area by a factor of 10,000,
constituting a fundamental data-reporting mistake.

Figure 8: Two of Gemini 2.5 Pro’s feedback on Ye et al. (2025).

notices a potential error in the units, where a certain compound was assigned a surface area 10000x
smaller than all the other compounds in the same family. Because the authors do not mention this
extreme property of this material, we suspect that this is a real typo. While not severe, this error is
the only instance in which we observe an LLM identifying an unannotated but genuine error.

In summary, case studies demonstrate that current LLM models struggle in SPOT. In mathematics,
both models mistakenly flagged issues unrelated to the genuine critical error, revealing difficulties in
handling rare and complex mathematical formulations. In contrast, in materials science, while o3
misunderstood the experimental details due to poor contextual reasoning, Gemini 2.5 Pro successfully
identified an actual unannotated error involving units.

5 RELATED WORKS

AI Co-Scientists Recent breakthroughs have pushed LLMs to PhD-level performance on STEM
benchmarks (Rein et al., 2024), driving them as generators of the scientific forward pass, encompass-
ing hypothesis generation (Si et al., 2024), experimental planning (Seo et al., 2025), and manuscript
drafting (Jain and Jain, 2024). Such systems, or AI Co-Scientists (Lu et al., 2024; DeepMind, 2025),
employ agent-based pipelines that mirror the stages of scientific research. However, concurrent works
often omit a rigorous backward pass or “verification” and instead rely on LLM judges (Zheng et al.,
2023). Yet, prior studies demonstrate that LLM judges may fail on complex tasks (Son et al., 2024),
allowing factual and methodological errors to remain undetected. This compromises the reliability of
AI-driven research. Notably, verifiability has long been central to scaling AI progress: self-supervised
learning employs next-token prediction as a provable training objective (Jernite et al., 2017); and
reinforcement learning uses verifiable rewards (Guo et al., 2025b) for alignment. Likewise, we posit
that robust scientific verification must underpin reliable LLM-driven scientific research.

Automating Scientific Verification Two research strands, fact verification and automated peer
review generation, may appear related to SPOT, but each has critical limitations. Prior fact verification
benchmarks (Thorne et al., 2018; Wadden et al., 2020) concentrate on claims at the sentence level and
rely on text inputs to assess consistency with references. Automated peer review systems draw almost
entirely on computer science publications (Gao et al., 2024; Baumgärtner et al., 2025), restricting
their disciplinary coverage. These approaches measure success by matching past reviews via metrics
such as ROUGE (Zeng et al., 2024) rather than detecting errors. They also overlook the inherent
noise in peer review reports (Cortes and Lawrence, 2021; Bonavia and Marin-Garcia, 2023) and
seldom apply adequate quality control or validate ground truth. Our work sets apart, by using expert
and automated validation to distill only genuine mistakes into SPOT. Additionally, we package full,
multimodal papers into models at inference, mirroring real-world academic verifications.

6 CONCLUSION

In this paper, we introduce SPOT, a multimodal error-detection benchmark that captures the full
complexity of frontier-level scientific research. Each instance averages 12,000 text tokens and 18
images, posing a significant challenge for current large language models: OpenAI’s o3 and Google’s
Gemini 2.5 Pro achieve pass@1 scores of only 18.4 % and 7.3 %, respectively. Our expert-led case
studies further show that these models fall short in long-tail domain knowledge and implicit multi-step
calculations. Together with the rise of interest in AI Co-Scientists, these results highlight the need for
further research in robust verification systems to ensure reliability in AI-driven research workflows.
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ETHICS STATEMENT

We used ChatGPT to refine the writing and assist with coding. Before release, we removed copy-
righted material from the dataset in accordance to publisher policies.

REPRODUCIBILITY STATEMENT

Evaluation prompts and processing details are provided in Appendix F. We release the code, data-
generation scripts, training configurations, and evaluation pipelines at https://anonymous.
4open.science/r/SPOT-anon-C0F7/. The dataset will be released on Hugging Face.
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A LIMITATIONS

Benchmark Coverage By prioritizing copyright compliance(Appendix E), contamination preven-
tion, and annotation accuracy, SPOT remains relatively modest in size. We leave the expansion of this
effort to create larger, more diverse benchmarks that span additional scientific disciplines and error
categories to future works.

Annotation Validity and Evaluation Protocol All errors in SPOT are verified by explicit author
acknowledgments or retraction notices, but the complexity of scientific manuscripts means some true
errors may be unannotated. Our case studies reveal that false negatives can arise from the following
cases:

1. The author’s note contains an error location that does not sufficiently cover all the affected
results.

2. There exist smaller errors unrelated to the main technical error in the preprint.

Conversely, false positives may occur when:

1. An LLM correctly points out a theorem that contains an error, but the content in the LLM’s
response is still irrelevant.

We therefore recommend a secondary expert review, particularly for domains with complex logical
dependencies or deep specialization, to validate and refine model-flagged errors.

B ADDITIONAL ANALYSIS

B.1 IMPACT OF CONTEXT LENGTH IN DETECTING SCIENTIFIC ERRORS

o3

Gemini-2.5-Pro

Claude-3.7-Sonnet:Thinking

Qwen2.5-VL-72B-Instru
ct

Llama-4-Maverick
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Figure 9: Impact of context length on error de-
tection. Each bar shows ∆ = (segment-only - full-
paper) for precision and recall across five models
(o3, Gemini 2.5 Pro, Claude 3.7-Sonnet:Thinking,
Qwen 2.5-VL-72B-Instruct, Llama-4-Maverick).

In Table 2, we evaluate each model on complete
manuscripts, which can span up to 140,000 char-
acters and 90 figures. However, LLMs still strug-
gle to synthesize long-context information (Vodra-
halli et al., 2024); to isolate the effect of context
length on error detection, we extract the page con-
taining the ground-truth error and rerun the same
detection prompt on this shorter segment. Com-
paring the full-paper and segment-only set-
tings decouples long-context processing from core
error-detection ability. For this ablation, we conduct
experiments on a subset of 36 instances, excluding
the Equation/Proof category—mathematical papers
often rely on global notation and prior results, making
single sections insufficient—and we omit any errors
that span multiple sections.

Figure 9 plots ∆ = (segment-only – full-paper) for precision and recall. Gemini-2.5-Pro leads
with gains of +4.7 precision and +13.5 recall. o3 follows at +3.7/+8.5, then Claude-3.7-Sonnet at
+2.2/+2.1, and Llama-4-Maverick at +1.6/+2.2—showing that long-context processing often masks
their true error-detection performance. o3’s smaller gains reflect the removal of Equation/Proof cases,
its original strength. Qwen2.5-VL-72B-Instruct shows almost no change (–0.4 precision, –0.1 recall),
indicating a fundamental limit in its error-detection capability rather than a context-length issue.

B.2 IMPACT OF TEST-TIME SCALING IN DETECTING SCIENTIFIC ERRORS

Test-time scaling involves adjusting the inference budget (Jones, 2021), such as the depth of reasoning
or number of solution paths explored (Son et al., 2025), to boost model performance on complex
tasks. This approach is widely adopted in STEM and reasoning benchmarks (Snell et al., 2024),
where allocating more computational effort to inference has been shown to yield higher performance.
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We use OpenAI’s o4-mini series (OpenAI, 2025a) for our experiments and vary the “reasoning effort”
parameter across low, medium, and high settings.6

low med high
Reasoning Effort

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pe
rfo

rm
an

ce

pass@1
pass@2

Figure 10: Performance of o4-mini with vary-
ing reasoning effort. Performance is reported
from three independent trials.

In Figure 10, we see that o4-mini’s error-detection
performance increases almost linearly with higher
reasoning effort, demonstrating that scaling compu-
tation at test time effectively boosts accuracy. This
finding is consistent with how specialized “Think-
ing” modes (e.g., Claude 3.7-Sonnet:Thinking VS-
Claude 3.7-Sonnet) and reasoning-trained models
(DeepSeek-R1 vs. DeepSeek-V3) deliver similar
boosts, also in line with recent error-detection lit-
erature (Ahuja et al., 2025).

C ESTIMATING
CONFIDENCE FOR pass@K

Given N papers with ground-truth error sets
G1, . . . , GN , we define the pass@K metric as

pass@K =
1∑N

i=1 |Gi|

N∑
i=1

∑
g∈Gi

1
[
∃ s ∈ {1, . . . ,K} : g ∈ pi[s]

]
, (3)

where pi[s] denotes the set of errors predicted in the sth run for paper i. This captures the fraction of
all ground-truth errors detected in at least one of K independent attempts.

C.1 UNBIASED PER-ERROR CONFIDENCE

To assign each ground-truth error g ∈ Gi a confidence score, we perform n independent runs (here
n = 8) and let ci,g be the number of runs in which g is detected. The probability that all K fresh
attempts miss g is

(
n−ci,g

K

)(
n
K

) , (4)

So one minus this quantity is the probability of ≥ 1 success (Chen et al., 2021). Hence the unbiased
estimator for the pass@K probability of error g is

p̂i,g = 1 −
(
n−ci,g

K

)(
n
K

) . (5)

C.2 AGGREGATING CONFIDENCE AND CALIBRATION

We then aggregate these per-error confidences into an overall self-estimated confidence:

Confidence =
1∑N

i=1 |Gi|

N∑
i=1

∑
g∈Gi

p̂i,g. (6)

6While recent work has demonstrated similar budget controlling strategies for open models (Muennighoff
et al., 2025), the full-size MLLMs (Llama-4-Maverick totaling 402B parameters) were too large to host for
multi-thousand-token generations.
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D CASE STUDY

D.1 MATHEMATICS

We selected Petersen and Tommasi (2024) and Park et al. (2024b), both in the area of algebraic
geometry in pure mathematics. Petersen and Tommasi (2024) studies the configuration spaces of
points in algebraic varieties with a multiplicative decomposition, and discusses some applications
such as the cohomology of moduli stacks of hyperelliptic curves. It was withdrawn because of a
gap that lies in the core arguments of Theorem 1.8 and Theorem 1.13. On the other hand, Park et al.
(2024b) studies projective hypersurfaces with real coefficients and presents an explicit description
of the complex conjugation of singular cohomology in terms of algebraic de Rham cohomology.
The authors’ withdrawal note on arXiv suggests that a hidden assumption on Hodge numbers was
accidentally introduced in the early set-up of section 2.2, thus making Theorem 2.3 only valid under
the additional assumption. We run our evaluation using OpenAI o3 and Gemini 2.5 Pro over the two
pre-prints, once for each combination.

• Section 2.3, proof of Theorem 2.3: They set

C
(
φC(Uk), φC(Uk)

)
=

∫
X

φC(Uk) ∧ φC(Uk)

and claim it equals the nonzero quantity Uk,γ ; however, for even n, φC(Uk) has odd degree n− 1,
so φC(Uk) ∧ φC(Uk) = 0 identically, making the equality impossible and invalidating Lemma 2.5
and Theorem 2.3.

• Example 2.4: Using the erroneous formula without complex conjugation yields µ = 0, which would
force φC([1]) = 0, contradicting that [1] represents the holomorphic 1-form. This example exposes
the same flaw as in the main proof.

• Theorem 2.3 (implicit assumption): Formula (2.10) divides by Uk,γ , but the proof provides no
argument that Uk,γ ̸= 0. In fact, for odd-degree forms Uk,γ vanishes, so the construction of f̃ji(x)
is undefined.

Figure 11: o3’s initial feedback on Park et al. (2024b).

• Section 2.5: Corollary 2.7 incorrectly describes the R-span of the algebraic representatives for the real
primitive cohomology Hn−1

prim(X,R). The basis elements given, [ωji ] and [
√
−1ωji ], correspond

under φC to ℜ(ωk) and iℜ(ωk). The correct basis for the real cohomology H(X,R) should
correspond to ℜ(ωk) and ℑ(ωk), where ωk = φC(Uk). This makes the explicit description of
(φ−1

C ◦ P )
(
Hn−1

prim(X,R)
)

scientifically invalid.

• Example 2.8: This example illustrates Corollary 2.7 for elliptic curves and thus inherits the same
flaw. The stated R-span R[. . . ] +

√
−1R[. . . ] describes an incorrect subspace related only to the

real part of the basis forms, not the full real cohomology H1(X,R).

Figure 12: Gemini-2.5-Pro’s initial feedback on Park et al. (2024b).

Since we have already analyzed the LLM responses for Petersen and Tommasi (2024) in Section 4,
here we only describe some additional analysis on Park et al. (2024b). Our first attempt at running
our pipeline introduced many OCR errors, such as missing conjugations in an integral. Both o3 and
Gemini-2.5-Pro reacted to different OCR errors and identified them as mistakes (Figures 11 and 12).

After an improvement (inclusion of GPT-4.1 mentioned in Section 2), surprisingly, o3 claimed that
there are no errors in Park et al. (2024b).

As to Gemini 2.5 Pro, it proposed several potential mistakes (Figure 13). First, it argued that in
the statement of Theorem 2.3, “the existence of a polynomial gji such that rfji ,gji ̸= 0" was never
justified. Although this may be a fair writing feedback, this does not constitute an error. Aside from
another OCR problem where the LLM saw an incorrect mathematical equation, another argument it
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made was that in Example 2.8, the basis of the cohomology on the right-hand side was unconventional
and R · [ω] + R · (i[ω]) was better. This was made out of context, and the LLM might have forgotten
that this example was an application of Corollary 2.7.

• Section 2.2, Theorem 2.3: The theorem requires the existence of a polynomial gji such that

rfji,gji ̸= 0

(hence fji /∈ Jac(G)). However, the paper never justifies that the chosen basis elements

Uk = yifji

(relative to Jac(S)) can always be represented by polynomials fji lying outside Jac(G). This hidden
assumption is crucial for formula (2.10) to be well-defined and for the theorem to hold.

• Section 2.2, Example 2.4: The text claims the constant µ is proportional to(∫
γ1

ω
) (∫

γ2

ω
)
−

(∫
γ2

ω
) (∫

γ1

ω
)
.

But by Definition 2.2 and the pairing C(ω, ω), it should be(∫
γ1

ω
) (∫

γ2

ω
)
−

(∫
γ2

ω
) (∫

γ1

ω
)
,

—the presented formula omits the complex-conjugate terms, indicating a calculation error.

• Section 2.4: For odd n, the paper defines

Uk,γ = PX · P · PXT .

But since Uk,γ comes from the pairing C(ϕC(Uk), ϕC(Uk)) and PX is complex, the correct
expression uses the conjugate transpose:

Uk,γ = PX · P · PXT ,

so using PXT is mathematically incorrect.

• Section 2.5, Example 2.8: The basis for the real cohomology is written as

R
[
(1 + µ yd(x))/2

]
+

√
−1R

[
(1 + µ yd(x))/2

]
,

which is unconventional and obscures the structure. A clearer description is

R · [ω] + R ·
(
i[ω]

)
,

explicitly showing the real subspace spanned by [ω] and its i-multiple.

Figure 13: Gemini-2.5-Pro’s regenerated feedback on Park et al. (2024b).
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D.2 MATERIAL SCIENCE

We select Ye et al. (2025) and Altuijri et al. (2024), two recent materials-science studies. Ye et al.
(2025) investigates the synthesis of covalent organic frameworks (COFs), a class of porous materials
with diverse applications, using a novel superacid-catalyzed process that enables the fabrication of
new types of COF architectures. Several errors were pointed out about this article, mostly due to
mislabeling COFs either in the text or in the figures, but none of them impact the conclusions of
the article. Altuijri et al. (2024) proposes a method to increase the hydrophobicity and electrical
properties of certain types of films by incidence with low-energy argon beams. This work had a
wrong caption, claiming to have used a different beam intensity on a certain panel when that panel
was at a different magnification. Both these errors are easier to spot than the ones found in the
mathematics articles. While some of the errors in Ye et al. (2025) require some domain knowledge in
COFs, most of the other errors can be spotted by paying close attention to the text and figures.

• Section 2.2, Model Reactions (Figures 1C–G): Quantitative yields of individual species are de-
rived from a single UV absorbance at 240 nm without extinction-coefficient calibration or spectral
deconvolution, even though all species overlap strongly in this region. The reported 92 %, 82 %, etc.
compositions are therefore not experimentally supported.

• Section 2.2 / Figure 1H: Assumes acetals are unaffected by NaHCO3 neutralization; no control
provided. If acetals hydrolyze under basic conditions, the calculated “protected” fractions are invalid,
undermining the mechanistic interpretation.

• Section 2.3: Conclusion that barriers < 20 kcal mol−1 imply “full reversibility at room temperature”
ignores solvent and entropic contributions; a 19 kcal mol−1 barrier can correspond to multi-hour
timescales. The stated kinetic implication is not justified by the DFT data.

• Abstract & Section 2.5: Optimal TfOH concentration is stated as 0.006–0.016 M, yet all optimization
and “standard” syntheses use 0.2 M TfOH. Internal inconsistency invalidates the universality of the
claimed optimum.

• Section 2.4 / Figure 2: Higher PXRD peak counts are used as evidence of greater crystallinity, but
raw intensity is instrument- and packing-dependent. Without normalization or an internal standard,
counts cannot be compared between samples, so the claim of superior crystallinity is unsupported.

• Section 2.7, “nine new COFs” claim: Authors conclude AcOH “cannot” give these COFs after
testing only a single AcOH condition per monomer pair. Lack of systematic screening means the
impossibility claim is unsubstantiated.

• Section 2.11, Photocatalysis: Performance deemed “exceptional” based solely on DPBF bleaching
time, with no quantum yield, turnover number, or photon-normalized rate. Comparisons to literature
therefore lack a common metric, invalidating the superiority claim.

Figure 14: o3’s regenerated feedback on Ye et al. (2025).

Most of the errors OpenAI’s o3 pointed out on Ye et al. (2025) were on the experimental setup
and the conclusions that the authors derived from them. Although the specific points raised by
o3 seem to be plausible mistakes, all of them either stem from misunderstandings by o3 or from
ignoring information. For example in Figure 14, the claim that the UV-derived yields in Section 2.2
(Figures 1C–G) lack support is a hallucination: the authors validate those compositions with 1H NMR
spectroscopy, which produces results similar to the UV measurements, so it is incorrect to argue that
the yields are unsupported. In Section 2.3, o3 contends that barriers below 20 kcal mol−1 cannot
guarantee “full reversibility” at room temperature. While entropic factors do affect reaction rates,
barriers under 20 kcal mol−1 are generally regarded as low enough for reversibility, and multi-hour
timescales still allow dynamic equilibrium. This error likely stems from o3’s unfamiliarity with
practical conventions in kinetic chemistry. Finally, for photocatalysis performance (Section 2.11), o3
questions the “exceptional” activity because no quantum yields or turnover numbers are provided.
However, o3 does not have access to the supplementary information and thus is hallucinating that no
DPBF bleaching comparisons exist, Table S10 demonstrates that these COFs outperform those in the
literature.

Gemini 2.5 Pro also misunderstand the authors, in it feedback regarding Section 2.7 (Figure 4C) is
related to the fact that the authors claim that a certain reagent is not suitable for the production of a
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• Section 2.3 and Figure 1I (related to Section 2.2(2)): The DFT-calculated relative energy of the
acetal product P1 (+7.4 kcal/mol compared to benzaldehyde) indicates it is thermodynamically highly
unfavorable, directly contradicting the experimental 81 % yield reported in Section 2.2(2), which
would require a negative ∆G (approx. –0.85 kcal/mol). This discrepancy undermines the validity of
the DFT calculations as an explanation for the experimentally observed acetal protection.

• Section 2.5(1) and Figures 3A, 3C, 3E: The text states that low-boiling point solvents (MeOH,
EtOH, n-propanol) are ’unsuitable’ for reactions at 120 °C due to their boiling points being below this
temperature. However, Figure 3 A,C,E present PXRD data for COFs synthesized in these solvents,
presumably at 120 °C. The manuscript fails to specify whether these reactions were performed in
sealed vessels. If not, solvent evaporation would lead to uncontrolled and non-reproducible reaction
conditions, invalidating the results obtained with these specific solvents.

• Section 2.6: The BET surface area for the scaled-up TFPPy-PDA-COF is reported as “1606 cm2 g–1.”
The correct unit is m2/g. This unit error misrepresents the surface area value by a factor of 10,000
and is a fundamental error in data reporting.

• Abstract; Introductory paragraph; Section 2.7; Figure 4C: The paper claims “nine new imine-
linked frameworks,” but Figure 4C highlights ten COFs (#5, #9, #13, #14, #15, #18, #23, #24, #25,
#28) as newly synthesized or inaccessible by traditional methods, creating a numerical inconsistency.

• Unnumbered paragraph on PXRD for Figure 6H: There is a contradiction in the indexing of
PXRD peaks for TAPPy-TFPPy-COF (Figure 6H). The peaks are initially assigned to facets including
(020): ’TAPPy-TFPPy-COF displayed peaks at 5.00°, 6.90°, 10.08°, 15.24°, and 23.22°...assigned to
the (110), (020), (220), (330), and (001) facets...’. A subsequent concluding sentence for this group
of COFs states related peaks ’were attributed to the (100), (110), (220), (330), and (001) facets...’.
The differing indices for the second peak ((020) vs. (100)) for the same data create ambiguity and
undermine the reliability of the structural characterization from PXRD for this COF.

Figure 15: Gemini-2.5-Pro’s regenerated feedback on Ye et al. (2025).

COF and they show how it does not produce such a good results, because of this Gemini claims that
the reagent can actually be used because the authors used it in a figure. Contrary to o3, it does find a
real mistake by noticing that one of the characterizations of a certain COF contained the wrong unit,
making the measurement 10000 times smaller.

• Methods – SRIM simulation / Figure 2: Authors discuss ion penetration up to 1 µm for 4 keV Ar+,
whereas SRIM and the plotted axis (0–1000 Å) show a stopping range below 20 nm. Conclusions
about bulk (µm-scale) modification rest on an impossible depth estimate.

• Results – EDX (Figures 3 & 4): Claim that irradiation changed elemental composition is based on
C, O, N shifts under 2 wt %, well inside normal EDX error; no statistics provided, so the asserted
chemical change is unsupported.

• Results – Contact angle / Work of adhesion (Eq. [1], Figures 7 & 8): Reported Wa values do not
satisfy Wa = γℓ(1 + cos θ); for example, θ = 62.1◦ for water gives 106 mJ m−2, but the table lists
74.2 mJ m−2. All subsequent surface-energy conclusions use these erroneous numbers.

• Results – Surface free energy (Figure 9): Owens–Wendt requires two liquids to solve for γd
s and

γp
s . With only two liquids the solution at each fluence is unique, yet the authors report independent

trends for both components, indicating a mathematical inconsistency.

• Results – Electrical conductivity (Figure 10, text): Two mutually contradictory pristine conduc-
tivities are given (3.8× 10−7 S cm−1 vs. 1.1× 10−8 S cm−1). The inconsistency invalidates the
reported enhancements due to irradiation.

• Results – Potential barrier calculation (Figure 11, Eq. [4]): Formula Wm = −4kBT/m sets an
upper magnitude of 0.104 eV at 300 K, yet values up to 1.07 eV are reported and the sign is ignored;
the dielectric analysis is therefore mathematically impossible.

Figure 16: o3’s regenerated feedback on Altuijri et al. (2024).
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Figure 16, are feedbacks of o3 on Altuijri et al. (2024). Here, it seems like many of o3’s flagged
issues arise from misinterpretation rather than true errors. Its EDX objection ignores that the authors
corroborate composition changes with complementary measurements and that small weight-percent
shifts demand statistical treatment. Regarding contact angle, o3 uses diiodomethane data instead of
water, miscomputing Wa. The supposed Owens–Wendt inconsistency stems from a misunderstanding
that two liquids yield a unique solution per fluence, so the reported parallel trends do not imply
mathematical error. Finally, the potential barrier formula comes from literature conventions, and
Figure 11 presents a related quantity rather than misapplying the sign.

• Figure 2a: The text states SRIM simulation data is shown for depths of 0 to 1 µm, but the x-axis
of Figure 2a (“Target Depth”) only extends to 1000 Å (0.1 µm). This misrepresents the range of
simulation data presented visually.

• Results and Discussion – Contact Angle, Work of Adhesion, Surface Free Energy (Figures 7, 8,
9): Table I (containing contact angle and work of adhesion data) and Table II (containing surface
free energy data) are referenced but not provided. This prevents independent verification of the data
plotted in Figures 7–9 and the calculations derived from them, undermining the scientific validity of
these results.

• Results and Discussion – Work of Adhesion (Figure 8): The work of adhesion Wa values reported
in the text (and presumably plotted in Figure 8) are inconsistent with calculations based on contact
angle data from Figure 7 and standard liquid surface tension values (e.g., water at 4×1014 ions/cm2:
reported Wa = 74.2mJ/m2, calculated Wa ≈ 106.4mJ/m2) . The liquid surface tension values (
γℓ) used for calculations are not stated, and the discrepancy suggests significant errors in calculation
or data, invalidating the reported Wa values.

• Results and Discussion – Figure 10 and related text: AC conductivity σac values at 50 Hz
reported in the text for irradiated samples differ significantly (e.g. for 4 × 1014 ions·cm–2: text
3.8 × 10−7 S cm−1 vs. Fig. 10 data ∼ 3.74 × 10−8 S cm−1) in a summary paragraph preceding
the electrical characterization. This contradiction undermines the baseline characterization of the
material.

• Results and Discussion – Electrical Properties: The AC conductivity σac for unirradiated (pristine)
CA/PANI at 50 Hz is reported inconsistently: as 1.1 × 10−8 S cm−1 in the Figure 10 discussion
(matching the figure) and as 3.8× 10−7 S cm−1 in a preceding summary paragraph.

• Results and Discussion – Figure 11 and Equation [4]: The exponent m for calculating Wm is
derived from a narrow low-frequency range in Figure 11 (lnω ≈ 5.8–6.5), which is not justified and
may not be representative of the model used. The validity of conclusions based on Wm is therefore
questionable

• Results and Discussion – Equation [4]: The formula

Wm = −4kBT

m

used for calculating the maximum potential barrier is unconventional for hopping conduction models,
and its scientific basis or appropriateness for this system is not established via the provided citation
[40] or derivation. Using an potentially incorrect or unsubstantiated formula invalidates the calculated
Wm values.

• Results and Discussion – Calculation of Wm: The text states that the estimated Wm “decreased
from 0.116 eV. . . to 1.03 eV.” However, the authors’ reported values (0.116, 0.11, 1.07, 1.03) eV
show a non-monotonic behavior (slight decrease, then large increase, then slight decrease). This is a
misrepresentation of their calculated results.

Figure 17: Gemini-2.5-Pro’s regenerated feedback on Altuijri et al. (2024).

In Figure 17 we observe multiple errors where Gemini-2.5-Pro fails to identify visual inputs correctly;
for instance, it claims that Tables I and II referenced in the discussion of Figures 7–9 are missing,
even though those tables are present, indicating it has failed to identify the context. Additionally, in
Figure 10, it misreads a log-scaled plot as linear and thereby hallucinates values.
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• Section 3.1.1 / Table 1: Temperature “predictions” obtained from T = PM
ρR

are tautological because
ρ = PM

RT
by definition; using measured P , M , and ρ always reproduces the measured T . This

provides no evidence against the greenhouse effect yet is used as the cornerstone of the paper’s
conclusions.

• Section 3.1.2 (Equations 3–4 and Figure 1): The forcing equation is applied with log10 instead
of the natural log, reducing ∆F by ≈ 2.3× and yielding a spurious warming of 0.64–0.81 ◦C for
CO2 doubling. Correct use of ln gives 1.5–1.9 ◦C, invalidating the claim that future warming is
negligible.

• Section 3.1.2 (Climate-sensitivity discussion): Derived ECS ≈ 0.5 ◦C ignores water-vapour, lapse-
rate, and cloud feedbacks without justification; hence the stated upper bound on warming lacks the
physical components known to amplify CO2 forcing.

• Section 3.1.4 (Residence time of CO2): Paper conflates 3–5 yr molecular turnover time with the
multi-century adjustment time of a concentration perturbation, leading to the unsupported claim that
anthropogenic CO2 ‘quickly disappears’ and is climatically irrelevant.

• Section 3.1.4 (Anthropogenic share argument): Using the fact that anthropogenic emissions are
∼ 4% of gross annual flux to assert they cannot raise atmospheric CO2 ignores that natural sources
and sinks are nearly balanced; failure to perform a mass-balance analysis renders the conclusion
scientifically invalid.

• Section 3.1 (General claim of “no greenhouse effect”): Assertion that adiabatic compression or ther-
mal conductivity alone explains the 33 K surface–space temperature difference disregards radiative-
transfer energy balance and provides no quantitative mechanism, contradicting well-established
physics without offering an alternative that reproduces observed fluxes.

Figure 18: o3’s regenerated feedback on Simpson (2024).

D.3 ENVIRONMENTAL SCIENCE

We selected Simpson (2024) in environmental science, the paper conductsa comprehensive evaluation
of human contributions to atmospheric CO2. In a data-driven analysis, Simpson (2024) argues that
human-induced CO2 emissions are negligible compared to natural sources, thereby questioning the
validity of the Greenhouse Gas Hypothesis. However, the original version of the paper contains a
miscalculation in Section 3.1.2, “Measurement of Infrared Absorption of the Earth’s Atmosphere.”
Specifically, the author incorrectly applies Equation (3) from the IPCC: F = 5.35 ln

(
Ct

C0

)
by using

the base-10 logarithm (log10) instead of the natural logarithm (ln), leading to erroneous numerical
values. Regarding the miscalculation, in Figure 18, o3 correctly locates the target error: “log10
instead of the natural log, reducing ∆F by ≈ 2.3× and yielding a spurious warming of 0.64–0.81 ◦C
for CO2 doubling. Correct use of ln gives 1.5–1.9 ◦C,” highlighting a mismatch between the scale of
results and the correct calculation basis. However, its subsequent claim that this error “invalidates the
assertion of negligible future warming” seems overstated. As the authors acknowledge, projected
temperature increases remain modest. In short, the magnitude of these miscalculations is insufficient
to overturn the paper’s broader argument about limited warming.

On the other hand, Gemini2.5 fails to point out the specific error.

E ADDITIONAL DETAILS ON SPOT

License & Copyright SPOT comprises 83 manuscripts published across 28 venues (including
arXiv). Of these, 62 (74.7 %) are openly accessible under a CC license; we publicly share our fully
preprocessed versions via the Hugging Face Hub. The remaining 21 (25.3 %) are paywalled, so
we do not redistribute them directly. Organizations with institutional access to Springer Nature or
Elsevier can apply our preprocessing pipeline to generate their own versions.

Date To minimize contamination against parametric knowledge (Bejan et al., 2023), we aim to
include only papers published from 2024 onward. As Figure 19 shows, the bulk of our corpus dates
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Figure 19: Publication dates against first error-notice dates for the 83 manuscripts. Each point denotes
one paper; blue markers note papers published in 2024, while red markers are those otherwise.
to 2024, with ten papers from 2025 and three that originally appeared before 2023. Those three early
manuscripts passed our automated filters because revisions were submitted after 2024; we retained
them since their first error notices appeared in March 2024, minimizing any chance that models were
exposed to the original withdrawal details during training.

Annotation We use human annotators in Section 2 during the benchmark creation process. Details
on the annotator guideline are available in Figure 20, a sample image of the platform in Figure 21.

F ADDITIONAL DETAILS ON EVALUATION

Evaluation consists of two phases. In the first phase, the target LLM is prompted to identify potential
errors in each paper using our “Generation Prompt.” In the second phase, we employ GPT-4.1 to
align and compare the model’s candidates against the ground-truth annotations with our “Evaluation
Prompt.” In the remainder of this section, we specify details on generation configurations and present
the full text of both prompts.

F.1 GENERATION CONFIGURATIONS

For each model, we adopt the provider’s recommended parameters when available; otherwise, we use
a sampling temperature of 0.6, top-p of 0.95, a repetition penalty of 1.0, and enforce a minimum of 8
and a maximum of 8192 tokens.
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A lightweight Streamlit app for labeling errors discussed on PubPeer or papers withdrawn
from arXiv. Contributors review randomly selected papers, answer guided questions, and
append their work to annotations.csv.

GETTING STARTED

PREREQUISITES

• Python ≥ 3.8
• Streamlit
• pandas

INSTALLATION

# 1 Clone the repo
git clone https://github.com/guijinSON/ai4s_r2.git
cd ai4s_r2

# 2 Install dependencies
pip install streamlit pandas

DATASET

retracted_machine_filtered_final.csv ships with the repository—no addi-
tional download required.

USAGE

streamlit run streamlit_sample.py

1. Shuffle Sample loads a random paper.
2. Complete the six annotation questions in the right panel.
3. Click Save Annotation to append to annotations.csv.
4. Repeat until 3–5 rows are completed.
5. Click Submit to send annotations.csv to the maintainer.

Figure 20: Guideline provided to annotators.

26

https://streamlit.io/


1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 21: Example image of annotation platform.

F.2 PROMPTS

Generation Prompt

You are a scientific-rigor auditor. You will receive the parsed contents of a research paper.
Your job is to identify only those errors or flaws that directly undermine the scientific validity
of the paper’s methods, analyses, or conclusions. Your sole focus is identifying flaws,
such as errors in experimental design, data integrity, calculations, statistical inference, or
reproducibility, that directly call into question the validity of a specific claim, paragraph, or
the paper. Do not report issues purely presentational, rhetorical, stylistic, or related to citation
practices.
—
After you’ve done a detailed walkthrough of the paper, output exactly in this format—no
extra keys or commentary:

“‘
<analysis>
{detailed walk-through of how you checked each section/figure and why you flagged (or did
not flag) any flaw}
</analysis>

<response>

{
"has_error": <true | false>,
"errors": [

{
"location": "Section 2.1",
"description": "Claim that ‘all X are Y’ is ..."

},
{

"location": "Figure 3",
"description": "X-Axis labeled ‘Time (s)’ but units ..."

}
// ...more entries...

]
}

</response>

- Do not include other keys or prose outside these two tagged blocks.
- Do not report stylistic or citation issues.
- Be as precise as possible about where (section ID or figure/table) and what the scientific
flaw is.
- Each description of the errors must be rooted in a scientific rationale explaining why they
are ’wrong’ (not how they could be improved).

Begin your analysis now.
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Evaluation Prompt

You are an expert LLM-as-a-Judge. You will receive a JSON object with two arrays:

1. "annotations": the ground-truth errors (each has "location" and "description").
2. "predictions": the model’s reported errors (same format).

Task
1. Compare each prediction against each annotation.
2. A match occurs only when both "location" and "description" are identical.
3. Your output should be generated in the following format:

<analysis>
Analysis and comparison of each prediction and annotation.
</analysis>
<response>

{
"matches": [

{
"location": the location of the matched object, which should be
based on the annotated location,
"description": your explanation on why you think it is a match.
},

{
"location": ... ,
"description": ...
},

]
}

</response>

Be rigorous in considering matches; the location may be slightly differently named, but the
description must match overall.
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G DETAILED RESULTS

1. In Table 4 to 13 we present detailed results of each model from Table 2.
2. In Table 14 to 26 we present detailed results of the text-only evaluation from Table 3.

Table 4: Mean and standard deviation of pass@K for o3 (K ∈ {1, 2, 4}) by error category (left) and paper
category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 13.18.3 19.47.0 25.74.3 Biology 5.15.8 9.45.9 14.52.5
Equation / proof 33.63.8 51.66.1 67.53.7 Chemistry 0.00.0 0.00.0 0.00.0
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 21.011.5 36.112.1 55.99.5
Figure duplication 0.00.0 0.00.0 0.00.0 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 22.025.1 40.725.5 62.710.8 Environmental Science 5.112.0 10.715.6 22.115.8
Statistical reporting 45.717.2 62.817.9 88.412.5 Materials Science 14.26.0 16.70.0 16.70.0

Mathematics 34.35.3 53.36.0 67.62.5
Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 20.00.0 20.00.0 20.00.0
Physics 33.720.7 56.317.6 79.07.1

Table 5: Mean and standard deviation of pass@K for GPT-4.1 (K ∈ {1, 2, 4}) by error category (left) and
paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 6.45.6 11.46.6 19.26.1 Biology 21.46.5 34.87.5 48.97.3
Equation / proof 0.41.0 0.81.3 1.51.5 Chemistry 2.15.5 4.07.1 8.28.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 16.34.9 27.65.7 41.15.6 Engineering 12.921.9 23.124.9 39.320.5
Reagent identity 4.511.4 8.614.6 16.516.7 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 14.69.8 26.811.3 41.59.4

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 5.916.1 11.320.9 25.225.0
Multidisciplinary 12.78.4 22.98.7 36.47.4
Physics 0.00.0 0.00.0 0.00.0

Table 6: Mean and standard deviation of pass@K for Gemini-2.5-Pro (K ∈ {1, 2, 4}) by error category (left)
and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 12.67.0 22.37.6 36.56.9 Biology 2.03.4 3.94.4 7.65.1
Equation / proof 11.87.0 21.97.9 38.47.3 Chemistry 8.68.3 15.59.5 25.98.7
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 8.27.1 16.79.7 31.711.5
Figure duplication 1.52.6 2.83.4 5.53.9 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 0.00.0 0.00.0 0.00.0 Environmental Science 8.314.4 15.616.6 26.413.6
Statistical reporting 15.224.3 31.631.5 57.732.0 Materials Science 3.97.1 7.58.3 13.06.9

Mathematics 11.38.5 21.19.7 38.08.6
Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 11.25.9 20.37.7 32.88.8
Physics 14.614.5 25.714.9 39.712.8
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Table 7: Mean and standard deviation of pass@K for Gemini-2.0-Flash-Lite-001 (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 1.83.1 3.54.0 7.04.7 Biology 3.73.8 7.64.9 15.45.7
Equation / proof 0.00.0 0.00.0 0.00.0 Chemistry 2.15.5 4.27.2 8.18.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 3.22.9 6.33.7 12.94.2 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 3.910.7 8.714.7 16.916.7 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 2.15.5 4.17.2 8.38.3

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 3.18.2 6.611.0 12.612.5
Multidisciplinary 3.74.8 7.26.3 14.97.4
Physics 0.00.0 0.00.0 0.00.0

Table 8: Mean and standard deviation of pass@K for Claude-3.7-Sonnet:Thinking (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 8.04.2 15.75.8 29.36.9 Biology 13.47.3 23.99.9 41.210.6
Equation / proof 0.81.3 1.61.8 3.02.0 Chemistry 2.15.5 4.17.2 8.38.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 10.63.5 19.74.9 34.96.0 Engineering 6.216.5 12.021.4 24.825.0
Reagent identity 3.910.8 7.513.9 16.816.7 Environmental Science 16.423.2 33.129.8 59.829.3
Statistical reporting 3.18.3 6.110.7 12.512.5 Materials Science 10.411.4 20.814.3 38.414.5

Mathematics 0.61.6 1.32.2 2.52.5
Medicine 6.210.8 12.114.2 24.916.4
Multidisciplinary 10.010.0 19.213.2 35.814.9
Physics 0.00.0 0.00.0 0.00.0

Table 9: Mean and standard deviation of pass@K for Claude-3.7-Sonnet (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 7.06.2 13.67.7 25.48.1 Biology 10.65.3 17.85.5 27.35.0
Equation / proof 0.41.0 0.71.3 1.51.5 Chemistry 4.27.2 8.29.3 16.410.9
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 8.84.8 15.54.8 25.14.0 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 8.614.6 15.416.6 26.113.8 Environmental Science 3.910.8 7.513.9 16.816.7
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 8.28.3 15.910.2 30.111.2

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 3.48.5 6.410.9 12.812.5
Multidisciplinary 13.811.2 25.412.7 42.610.9
Physics 0.00.0 0.00.0 0.00.0
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Table 10: Mean and standard deviation of pass@K for Qwen2.5-VL-72B-instruct (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 0.41.7 0.92.4 1.83.1 Biology 1.53.1 3.04.1 6.25.7
Equation / proof 0.00.0 0.00.0 0.00.0 Chemistry 0.93.9 2.15.5 4.37.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 1.01.6 1.92.2 3.93.0 Engineering 3.112.1 6.616.9 12.821.8
Reagent identity 0.00.0 0.00.0 0.00.0 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 0.00.0 0.00.0 0.00.0

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 0.00.0 0.00.0 0.00.0
Physics 0.00.0 0.00.0 0.00.0

Table 11: Mean and standard deviation of pass@K for Qwen2.5-VL-32B-instruct (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 0.92.4 1.83.1 3.53.6 Biology 9.78.5 16.48.3 25.58.1
Equation / proof 0.00.0 0.00.0 0.00.0 Chemistry 6.411.6 12.014.0 21.113.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 4.74.5 7.94.9 12.24.8 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 8.014.3 16.116.7 26.613.4 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 0.00.0 0.00.0 0.00.0

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 0.00.0 0.00.0 0.00.0
Physics 0.00.0 0.00.0 0.00.0

Table 12: Mean and standard deviation of pass@K for Llama-4-Maverick (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 0.82.3 1.93.1 3.63.6 Biology 2.95.4 5.46.4 9.96.1
Equation / proof 0.00.0 0.00.0 0.00.0 Chemistry 2.25.7 4.37.3 8.58.3
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 1.92.7 3.63.2 6.63.1 Engineering 0.00.0 0.00.0 0.00.0
Reagent identity 4.111.0 8.014.2 16.516.7 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Materials Science 4.27.2 8.79.7 16.711.1

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 0.00.0 0.00.0 0.00.0
Physics 0.00.0 0.00.0 0.00.0
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Table 13: Mean and standard deviation of pass@K for Llama-4-Scout (K ∈ {1, 2, 4}) by error category (left)
and paper category (right). Detailed evaluations results for Table 2.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 2.63.4 4.94.1 9.24.2 Biology 6.56.0 12.87.9 25.39.6
Equation / proof 0.00.0 0.00.0 0.00.0 Chemistry 6.18.0 11.59.5 21.49.7
Experiment setup 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Figure duplication 3.64.9 7.06.4 14.07.6 Engineering 6.216.5 12.221.5 24.925.0
Reagent identity 3.910.7 8.714.7 16.916.7 Environmental Science 0.00.0 0.00.0 0.00.0
Statistical reporting 3.18.3 6.110.7 12.512.5 Materials Science 0.00.0 0.00.0 0.00.0

Mathematics 0.00.0 0.00.0 0.00.0
Medicine 3.18.3 6.110.7 12.512.5
Multidisciplinary 1.23.3 2.44.3 5.05.0
Physics 0.00.0 0.00.0 0.00.0

Table 14: Mean and standard deviation of pass@K for o3 (K ∈ {1, 2, 4}) by error category (left) and paper
category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 14.65.5 25.28.3 38.09.7 Biology 6.216.5 13.122.0 25.125.0
Equation / proof 24.64.9 41.35.5 62.85.7 Computer Science 24.07.8 42.88.9 66.87.5
Experiment setup 6.717.0 12.921.9 24.825.0 Environmental Science 12.021.4 24.125.0 40.020.0
Reagent identity 8.314.4 17.119.0 33.021.7 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 24.817.8 44.118.8 66.112.4 Mathematics 21.85.5 37.77.9 58.98.4

Medicine 12.433.0 25.143.4 48.750.0
Multidisciplinary 33.30.0 41.714.5 49.616.7
Physics 27.414.4 46.014.5 67.610.5

Table 15: Mean and standard deviation of pass@K for GPT-4.1 (K ∈ {1, 2, 4}) by error category (left) and
paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 8.614.6 15.716.6 26.113.8 Biology 6.216.5 13.122.0 25.125.0
Equation / proof 6.03.4 10.83.6 18.13.1 Computer Science 4.14.2 7.95.2 14.85.4
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 19.635.6 36.442.2 64.640.1
Reagent identity 8.314.4 16.719.1 33.221.9 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 15.612.1 22.37.8 25.00.0 Mathematics 4.33.9 8.04.3 13.53.8

Medicine 12.433.0 24.042.7 49.550.0
Multidisciplinary 45.916.2 71.317.4 92.214.1
Physics 0.00.0 0.00.0 0.00.0

Table 16: Mean and standard deviation of pass@K for Gemini-2.5-Pro (K ∈ {1, 2, 4}) by error category (left)
and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 4.17.2 7.78.3 13.06.9 Biology 0.00.0 0.00.0 0.00.0
Equation / proof 7.64.0 11.63.9 16.23.8 Computer Science 4.25.9 8.27.5 14.88.5
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 12.921.9 23.525.0 38.621.0
Reagent identity 8.314.4 15.416.6 26.113.8 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 12.112.5 19.610.3 24.72.8 Mathematics 5.02.5 7.12.5 9.02.0

Medicine 24.843.2 46.349.9 78.241.3
Multidisciplinary 49.416.7 73.620.2 92.314.1
Physics 0.00.0 0.00.0 0.00.0
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Table 17: Mean and standard deviation of pass@K for Gemini-2.0-Flash-Lite-001 (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 2.15.5 4.07.1 8.28.3 Biology 12.921.9 25.428.6 49.932.9
Equation / proof 1.11.5 2.11.7 3.91.8 Computer Science 2.13.6 3.84.2 6.53.5
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 0.00.0 0.00.0 0.00.0
Reagent identity 12.516.1 25.720.9 50.124.2 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 3.48.5 6.510.9 12.412.5 Mathematics 0.61.6 1.12.1 2.52.5

Medicine 11.732.2 26.244.0 50.750.0
Multidisciplinary 8.614.6 16.619.3 33.022.2
Physics 0.00.0 0.00.0 0.00.0

Table 18: Mean and standard deviation of pass@K for Claude-3.7-Sonnet:Thinking (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 6.211.6 12.114.0 21.113.3 Biology 0.00.0 0.00.0 0.00.0
Equation / proof 4.63.7 8.44.6 15.14.9 Computer Science 7.26.5 12.47.8 20.78.9
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 12.421.6 23.825.0 39.120.7
Reagent identity 0.00.0 0.00.0 0.00.0 Materials Science 6.216.5 12.621.7 24.325.0
Statistical reporting 18.420.6 31.219.9 44.311.6 Mathematics 4.53.9 8.04.3 13.63.7

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 8.014.3 15.816.7 26.413.5
Physics 4.27.2 7.78.3 13.06.9

Table 19: Mean and standard deviation of pass@K for Claude-3.7-Sonnet (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 6.38.1 11.610.1 21.510.0 Biology 6.216.5 12.021.4 24.825.0
Equation / proof 4.92.1 8.93.0 15.23.4 Computer Science 6.35.5 11.86.9 21.37.0
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 18.424.1 34.429.3 63.429.3
Reagent identity 4.111.0 8.014.2 16.516.7 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 3.48.5 6.510.9 12.412.5 Mathematics 3.84.2 6.44.2 9.93.3

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 8.914.8 17.218.9 33.521.2
Physics 0.00.0 0.00.0 0.00.0

Table 20: Mean and standard deviation of pass@K for DeepSeek-R1 (K ∈ {1, 2, 4}) by error category (left)
and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 12.111.7 20.511.5 30.26.5 Biology 7.417.8 14.322.6 28.924.7
Equation / proof 16.15.5 27.86.0 41.54.3 Computer Science 13.09.7 23.810.3 39.17.7
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 15.723.2 26.924.9 41.918.5
Reagent identity 4.911.8 9.515.1 19.316.5 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 28.315.7 43.319.8 61.318.1 Mathematics 15.94.1 26.95.2 39.75.0

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 38.420.8 55.915.6 65.85.3
Physics 16.318.0 28.117.3 42.29.7
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Table 21: Mean and standard deviation of pass@K for DeepSeek-V3-0324 (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 7.08.2 12.17.5 16.22.7 Biology 7.117.5 14.222.6 28.924.7
Equation / proof 1.31.5 2.62.0 5.22.1 Computer Science 1.12.8 2.23.7 4.94.1
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 29.324.6 51.427.0 76.824.9
Reagent identity 4.711.6 9.515.1 19.316.5 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Mathematics 0.71.7 1.42.3 2.92.5

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 0.00.0 0.00.0 0.00.0
Physics 0.00.0 0.00.0 0.00.0

Table 22: Mean and standard deviation of pass@K for Qwen3-235A-22B (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 8.48.3 15.89.5 26.78.2 Biology 0.00.0 0.00.0 0.00.0
Equation / proof 17.16.9 28.16.1 40.73.3 Computer Science 17.95.7 29.97.4 43.25.6
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 7.618.0 16.023.3 33.223.6
Reagent identity 5.712.5 11.615.9 22.315.7 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 25.920.6 44.418.9 64.812.3 Mathematics 12.76.3 20.66.3 31.24.9

Medicine 17.037.6 34.847.7 66.947.1
Multidisciplinary 45.224.4 74.625.0 98.27.5
Physics 16.69.7 28.712.8 43.210.2

Table 23: Mean and standard deviation of pass@K for Qwen2.5-VL-72B-Instruct (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 18.910.4 31.09.1 42.28.3 Biology 23.238.1 41.643.3 70.836.6
Equation / proof 0.41.0 0.81.3 1.81.5 Computer Science 0.00.0 0.00.0 0.00.0
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 34.434.5 55.431.7 79.624.6
Reagent identity 15.525.4 27.728.8 47.224.4 Materials Science 8.218.6 15.223.0 28.124.8
Statistical reporting 6.911.2 13.312.5 21.29.0 Mathematics 0.00.0 0.00.0 0.00.0

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 22.915.5 41.317.9 60.712.8
Physics 0.00.0 0.00.0 0.00.0

Table 24: Mean and standard deviation of pass@K for Qwen2.5-VL-32B-Instruct (K ∈ {1, 2, 4}) by error
category (left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 4.67.4 8.98.3 14.16.0 Biology 0.00.0 0.00.0 0.00.0
Equation / proof 0.00.0 0.00.0 0.00.0 Computer Science 0.00.0 0.00.0 0.00.0
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 0.00.0 0.00.0 0.00.0
Reagent identity 4.711.6 9.515.1 19.316.5 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Mathematics 0.00.0 0.00.0 0.00.0

Medicine 14.234.9 28.545.2 57.849.4
Multidisciplinary 9.114.9 17.716.6 28.311.9
Physics 0.00.0 0.00.0 0.00.0
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Table 25: Mean and standard deviation of pass@K for Llama-4-Maverick (K ∈ {1, 2, 4}) by error category
(left) and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 0.00.0 0.00.0 0.00.0 Biology 6.717.0 13.922.4 28.324.8
Equation / proof 0.81.3 1.71.8 3.52.0 Computer Science 1.12.8 2.23.7 4.94.1
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 0.00.0 0.00.0 0.00.0
Reagent identity 4.511.4 9.314.9 18.916.5 Materials Science 0.00.0 0.00.0 0.00.0
Statistical reporting 0.00.0 0.00.0 0.00.0 Mathematics 0.00.0 0.00.0 0.00.0

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 4.711.6 9.715.2 18.616.6
Physics 0.00.0 0.00.0 0.00.0

Table 26: Mean and standard deviation of pass@K for Llama-4-Scout (K ∈ {1, 2, 4}) by error category (left)
and paper category (right). Detailed evaluation results for text-only evaluation of Table 3.

Error Category Paper Category

Category pass@1 pass@2 pass@4 Category pass@1 pass@2 pass@4

Data Inconsistency 6.98.2 13.19.7 23.99.2 Biology 6.516.8 13.122.0 29.624.6
Equation / proof 0.81.3 1.51.5 2.61.0 Computer Science 2.33.7 4.14.2 7.22.8
Experiment setup 0.00.0 0.00.0 0.00.0 Environmental Science 14.122.5 26.225.0 42.218.2
Reagent identity 4.311.2 8.714.6 19.716.4 Materials Science 6.516.8 13.122.0 29.624.6
Statistical reporting 0.00.0 0.00.0 0.00.0 Mathematics 0.00.0 0.00.0 0.00.0

Medicine 0.00.0 0.00.0 0.00.0
Multidisciplinary 0.00.0 0.00.0 0.00.0
Physics 0.00.0 0.00.0 0.00.0
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